Copied to
clipboard

G = C42.176D4order 128 = 27

158th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.176D4, C23.467C24, C22.2512+ 1+4, C2.6Q82, C4⋊C420Q8, (C2×Q8)⋊9Q8, C4.40(C4⋊Q8), C4.59(C22⋊Q8), C429C4.31C2, C2.37(D43Q8), (C22×C4).843C23, (C2×C42).568C22, C22.318(C22×D4), C22.108(C22×Q8), (C22×Q8).437C22, C2.26(C22.29C24), C23.78C23.8C2, C23.67C23.41C2, C2.C42.203C22, C23.65C23.55C2, (C4×C4⋊C4).67C2, C2.16(C2×C4⋊Q8), (C2×C4×Q8).35C2, (C2×C4⋊Q8).34C2, (C2×C4).55(C2×Q8), (C2×C4).361(C2×D4), C2.35(C2×C22⋊Q8), (C2×C4).826(C4○D4), (C2×C4⋊C4).876C22, C22.343(C2×C4○D4), SmallGroup(128,1299)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.176D4
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.176D4
C1C23 — C42.176D4
C1C23 — C42.176D4
C1C23 — C42.176D4

Generators and relations for C42.176D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 420 in 250 conjugacy classes, 132 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C4⋊Q8, C22×Q8, C22×Q8, C4×C4⋊C4, C429C4, C23.65C23, C23.67C23, C23.78C23, C2×C4×Q8, C2×C4⋊Q8, C42.176D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, C2×C22⋊Q8, C2×C4⋊Q8, C22.29C24, D43Q8, Q82, C42.176D4

Smallest permutation representation of C42.176D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 20 45 13)(2 17 46 14)(3 18 47 15)(4 19 48 16)(5 37 127 36)(6 38 128 33)(7 39 125 34)(8 40 126 35)(9 42 23 50)(10 43 24 51)(11 44 21 52)(12 41 22 49)(25 54 30 57)(26 55 31 58)(27 56 32 59)(28 53 29 60)(61 65 100 72)(62 66 97 69)(63 67 98 70)(64 68 99 71)(73 108 111 86)(74 105 112 87)(75 106 109 88)(76 107 110 85)(77 113 82 102)(78 114 83 103)(79 115 84 104)(80 116 81 101)(89 117 96 124)(90 118 93 121)(91 119 94 122)(92 120 95 123)
(1 98 58 52)(2 62 59 43)(3 100 60 50)(4 64 57 41)(5 101 109 122)(6 115 110 118)(7 103 111 124)(8 113 112 120)(9 18 72 28)(10 14 69 32)(11 20 70 26)(12 16 71 30)(13 67 31 21)(15 65 29 23)(17 66 27 24)(19 68 25 22)(33 79 107 90)(34 83 108 96)(35 77 105 92)(36 81 106 94)(37 80 88 91)(38 84 85 93)(39 78 86 89)(40 82 87 95)(42 47 61 53)(44 45 63 55)(46 97 56 51)(48 99 54 49)(73 117 125 114)(74 123 126 102)(75 119 127 116)(76 121 128 104)
(1 125 3 127)(2 128 4 126)(5 45 7 47)(6 48 8 46)(9 80 11 78)(10 79 12 77)(13 34 15 36)(14 33 16 35)(17 38 19 40)(18 37 20 39)(21 83 23 81)(22 82 24 84)(25 87 27 85)(26 86 28 88)(29 106 31 108)(30 105 32 107)(41 102 43 104)(42 101 44 103)(49 113 51 115)(50 116 52 114)(53 109 55 111)(54 112 56 110)(57 74 59 76)(58 73 60 75)(61 122 63 124)(62 121 64 123)(65 94 67 96)(66 93 68 95)(69 90 71 92)(70 89 72 91)(97 118 99 120)(98 117 100 119)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,20,45,13)(2,17,46,14)(3,18,47,15)(4,19,48,16)(5,37,127,36)(6,38,128,33)(7,39,125,34)(8,40,126,35)(9,42,23,50)(10,43,24,51)(11,44,21,52)(12,41,22,49)(25,54,30,57)(26,55,31,58)(27,56,32,59)(28,53,29,60)(61,65,100,72)(62,66,97,69)(63,67,98,70)(64,68,99,71)(73,108,111,86)(74,105,112,87)(75,106,109,88)(76,107,110,85)(77,113,82,102)(78,114,83,103)(79,115,84,104)(80,116,81,101)(89,117,96,124)(90,118,93,121)(91,119,94,122)(92,120,95,123), (1,98,58,52)(2,62,59,43)(3,100,60,50)(4,64,57,41)(5,101,109,122)(6,115,110,118)(7,103,111,124)(8,113,112,120)(9,18,72,28)(10,14,69,32)(11,20,70,26)(12,16,71,30)(13,67,31,21)(15,65,29,23)(17,66,27,24)(19,68,25,22)(33,79,107,90)(34,83,108,96)(35,77,105,92)(36,81,106,94)(37,80,88,91)(38,84,85,93)(39,78,86,89)(40,82,87,95)(42,47,61,53)(44,45,63,55)(46,97,56,51)(48,99,54,49)(73,117,125,114)(74,123,126,102)(75,119,127,116)(76,121,128,104), (1,125,3,127)(2,128,4,126)(5,45,7,47)(6,48,8,46)(9,80,11,78)(10,79,12,77)(13,34,15,36)(14,33,16,35)(17,38,19,40)(18,37,20,39)(21,83,23,81)(22,82,24,84)(25,87,27,85)(26,86,28,88)(29,106,31,108)(30,105,32,107)(41,102,43,104)(42,101,44,103)(49,113,51,115)(50,116,52,114)(53,109,55,111)(54,112,56,110)(57,74,59,76)(58,73,60,75)(61,122,63,124)(62,121,64,123)(65,94,67,96)(66,93,68,95)(69,90,71,92)(70,89,72,91)(97,118,99,120)(98,117,100,119)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,20,45,13)(2,17,46,14)(3,18,47,15)(4,19,48,16)(5,37,127,36)(6,38,128,33)(7,39,125,34)(8,40,126,35)(9,42,23,50)(10,43,24,51)(11,44,21,52)(12,41,22,49)(25,54,30,57)(26,55,31,58)(27,56,32,59)(28,53,29,60)(61,65,100,72)(62,66,97,69)(63,67,98,70)(64,68,99,71)(73,108,111,86)(74,105,112,87)(75,106,109,88)(76,107,110,85)(77,113,82,102)(78,114,83,103)(79,115,84,104)(80,116,81,101)(89,117,96,124)(90,118,93,121)(91,119,94,122)(92,120,95,123), (1,98,58,52)(2,62,59,43)(3,100,60,50)(4,64,57,41)(5,101,109,122)(6,115,110,118)(7,103,111,124)(8,113,112,120)(9,18,72,28)(10,14,69,32)(11,20,70,26)(12,16,71,30)(13,67,31,21)(15,65,29,23)(17,66,27,24)(19,68,25,22)(33,79,107,90)(34,83,108,96)(35,77,105,92)(36,81,106,94)(37,80,88,91)(38,84,85,93)(39,78,86,89)(40,82,87,95)(42,47,61,53)(44,45,63,55)(46,97,56,51)(48,99,54,49)(73,117,125,114)(74,123,126,102)(75,119,127,116)(76,121,128,104), (1,125,3,127)(2,128,4,126)(5,45,7,47)(6,48,8,46)(9,80,11,78)(10,79,12,77)(13,34,15,36)(14,33,16,35)(17,38,19,40)(18,37,20,39)(21,83,23,81)(22,82,24,84)(25,87,27,85)(26,86,28,88)(29,106,31,108)(30,105,32,107)(41,102,43,104)(42,101,44,103)(49,113,51,115)(50,116,52,114)(53,109,55,111)(54,112,56,110)(57,74,59,76)(58,73,60,75)(61,122,63,124)(62,121,64,123)(65,94,67,96)(66,93,68,95)(69,90,71,92)(70,89,72,91)(97,118,99,120)(98,117,100,119) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,20,45,13),(2,17,46,14),(3,18,47,15),(4,19,48,16),(5,37,127,36),(6,38,128,33),(7,39,125,34),(8,40,126,35),(9,42,23,50),(10,43,24,51),(11,44,21,52),(12,41,22,49),(25,54,30,57),(26,55,31,58),(27,56,32,59),(28,53,29,60),(61,65,100,72),(62,66,97,69),(63,67,98,70),(64,68,99,71),(73,108,111,86),(74,105,112,87),(75,106,109,88),(76,107,110,85),(77,113,82,102),(78,114,83,103),(79,115,84,104),(80,116,81,101),(89,117,96,124),(90,118,93,121),(91,119,94,122),(92,120,95,123)], [(1,98,58,52),(2,62,59,43),(3,100,60,50),(4,64,57,41),(5,101,109,122),(6,115,110,118),(7,103,111,124),(8,113,112,120),(9,18,72,28),(10,14,69,32),(11,20,70,26),(12,16,71,30),(13,67,31,21),(15,65,29,23),(17,66,27,24),(19,68,25,22),(33,79,107,90),(34,83,108,96),(35,77,105,92),(36,81,106,94),(37,80,88,91),(38,84,85,93),(39,78,86,89),(40,82,87,95),(42,47,61,53),(44,45,63,55),(46,97,56,51),(48,99,54,49),(73,117,125,114),(74,123,126,102),(75,119,127,116),(76,121,128,104)], [(1,125,3,127),(2,128,4,126),(5,45,7,47),(6,48,8,46),(9,80,11,78),(10,79,12,77),(13,34,15,36),(14,33,16,35),(17,38,19,40),(18,37,20,39),(21,83,23,81),(22,82,24,84),(25,87,27,85),(26,86,28,88),(29,106,31,108),(30,105,32,107),(41,102,43,104),(42,101,44,103),(49,113,51,115),(50,116,52,114),(53,109,55,111),(54,112,56,110),(57,74,59,76),(58,73,60,75),(61,122,63,124),(62,121,64,123),(65,94,67,96),(66,93,68,95),(69,90,71,92),(70,89,72,91),(97,118,99,120),(98,117,100,119)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim1111111122224
type+++++++++--+
imageC1C2C2C2C2C2C2C2D4Q8Q8C4○D42+ 1+4
kernelC42.176D4C4×C4⋊C4C429C4C23.65C23C23.67C23C23.78C23C2×C4×Q8C2×C4⋊Q8C42C4⋊C4C2×Q8C2×C4C22
# reps1124241148442

Matrix representation of C42.176D4 in GL6(𝔽5)

300000
020000
000100
004000
000020
000003
,
200000
030000
000100
004000
000010
000001
,
300000
020000
004000
000400
000001
000010
,
010000
400000
000300
003000
000003
000030

G:=sub<GL(6,GF(5))| [3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0] >;

C42.176D4 in GAP, Magma, Sage, TeX

C_4^2._{176}D_4
% in TeX

G:=Group("C4^2.176D4");
// GroupNames label

G:=SmallGroup(128,1299);
// by ID

G=gap.SmallGroup(128,1299);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,568,758,723,184,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽